Standard Specification for Electric Fusion Welded Nickel and Nickel Alloy Pipe

This standard is issued under the fixed designation B 474; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers electric fusion welded pipe suitable for high-temperature or corrosive service as listed in Table 1. (Although no restrictions are placed on the sizes of pipe that may be furnished under this specification, commercial practice is commonly limited to sizes not less than 8 in. (203 mm) nominal diameter.)

1.2 Five classes of pipe are covered as follows:

1.2.1 Class 1—Pipe shall be double welded by processes employing filler metal in all passes and shall be completely radiographed.

1.2.2 Class 2—Pipe shall be double welded by processes employing filler metal in all passes. No radiography is required.

1.2.3 Class 3—Pipe shall be single welded by processes employing filler metal in all passes and shall be completely radiographed.

1.2.4 Class 4—Same as Class 3 except that the weld pass exposed to the inside pipe surface may be made without the addition of filler metal.

1.2.5 Class 5—Pipe shall be double welded by processes employing filler metal in all passes and shall be spot radiographed.

1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

A 370 Test Methods and Definitions for Mechanical Testing of Steel Products
B 127 Specification for Nickel-Copper Alloy (UNS N04400) Plate, Sheet, and Strip
B 162 Specification for Nickel Plate, Sheet, and Strip
B 168 Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06025 and N06045) and Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617) Plate, Sheet, and Strip
B 333 Specification for Nickel-Molybdenum Alloy Plate, Sheet, and Strip
B 424 Specification for Ni-Fe-Cr-Mo-Cu-Alloy (UNS N08825 and UNS N08221) Plate, Sheet, and Strip
B 435 Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Plate, Sheet, and Strip
B 443 Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625) Plate, Sheet, and Strip
B 463 Specification for UNS N08020, UNS N08026, and UNS N08024 Alloy Plate, Sheet, and Strip
B 536 Specification for Nickel-Iron-Chromium-Silicon Alloys (UNS N08330 and N08332) Plate, Sheet, and Strip
B 582 Specification for Nickel-Chromium-Iron-Molybdenum-Copper Alloy, Plate, Sheet, and Strip
B 880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
B 899 Terminology Relating to Non-ferrous Metals and Alloys
E 8 Test Methods for Tension Testing of Metallic Materials
E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E 1473 Test Method for Chemical Analysis of Nickel, Cobalt, and High Temperature Alloys

2 Annual Book of ASTM Standards, Vol 01.03.
4 Annual Book of ASTM Standards, Vol 03.01.
6 Annual Book of ASTM Standards, Vol 03.06.
2.2 American Society of Mechanical Engineers Standard: ASME Boiler and Pressure Vessel Code, Section IX and Section VIII, Div. 1.

2.3 American Welding Society Standards:
A5.4 Corrosion-Resisting Chromium and Chromium Nickel Steel Covered Welding Electrodes
A5.9 Corrosion-Resisting Chromium and Chromium Nickel Steel Welding Rods and Bare Electrodes
A5.11 Nickel and Nickel Alloy Covered Welded Electrodes
A5.14 Nickel and Nickel Alloy Bare Welding Rods and Electrodes

3. Terminology
3.1 Terms defined in Terminology B 899 shall apply unless otherwise defined in this standard.

4. Ordering Information
4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to, the following:
4.1.1 Quantity (feet or number of lengths),
4.1.2 Name of material or UNS number (electric-fusion-welded pipe),
4.1.3 Alloy (Table 1),
4.1.4 Class (see 1.2),
4.1.5 Size (outside diameter and minimum wall thickness),
4.1.6 Length (specific or random),
4.1.7 ASTM designation and year of issue,
4.1.8 Authorization for repair of plate defects by welding without prior approval if such is intended (see 9.4),
4.1.9 Circumferential weld permissibility (see 8.3.2), and
4.1.10 Supplementary requirements.

5. Materials and Manufacture
5.1 Materials—The plate material shall conform to the requirements of the appropriate raw material specification listed in 2.1.

5.2 Welding:
5.2.1 The joints shall be full penetration double-welded or single-welded butt joints employing fusion welding processes as defined under “Definitions,” ASME Boiler and Pressure Vessel Code, Section IX. This specification makes no provision for any difference in weld quality requirements regardless of the weld joint type employed (single or double) in making the weld. Where backing rings or strips are employed, the ring or strip material shall be of the same P-number (Table QW-422 of Section IX) as the plate being joined. Backing rings or strips shall be completely removed after welding, prior to any required radiography, and the exposed weld surface shall be examined visually for conformance to the requirements of 5.2.3. Welds made by procedures employing backing strips or rings which remain in place are prohibited. Welding procedures and welding operators shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX.

5.2.2 Except as provided in 5.2.2.1 and 5.2.2.2, welds shall be made in their entirety by processes involving the deposition of filler metal.
5.2.2.1 For Class 4 pipe employing multiple passes, the root-pass may be completed without the addition of filler metal.
5.2.2.2 For Class 4 pipe, the weld surface exposed inside the pipe may result from a single pass made from the inside of the pipe without the addition of filler metal.

TABLE 1 Recommended Heat Treatment

<table>
<thead>
<tr>
<th>Alloy</th>
<th>UNS Designation</th>
<th>PWHT<sup>a</sup>,<sup>b</sup> Deg. F. (Deg. C)</th>
<th>Quench</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 (Ni)</td>
<td>N02200</td>
<td>1650-1700 (900 to 928)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>201 (Low C)</td>
<td>N02201</td>
<td>1650-1700 (900 to 928)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>400 (Ni-Cu)</td>
<td>N04400</td>
<td>1650-1700 (900 to 928)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>X (Ni-Cr-Mo-Fe)</td>
<td>N06002</td>
<td>2150 (1177)<sup>c</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>C22<sup>f</sup> (Low C-Ni-Mo-Cr)</td>
<td>N06022</td>
<td>2050 (1120)<sup>c</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>G30<sup>g</sup> (Ni-Cr-Fe-Mo-Cu)</td>
<td>N06030</td>
<td>2150 (1177)<sup>c</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>C2000<sup>h</sup> (Ni-Cr-Mo-Cu)</td>
<td>N06200</td>
<td>2075-2125 (1135-1163)<sup>e</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>230<sup>i</sup> (Ni-Cr-W-Mo)</td>
<td>N06230</td>
<td>2150-2250 (1177-1232)<sup>e</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>600 (Ni-Cr)</td>
<td>N06600</td>
<td>1800-1850 (983 to 1010)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>601 (Ni-Cr-Fe-Al)</td>
<td>N06601</td>
<td>1600-1650 (874 to 900)<sup>e</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>625 (Ni-Cr-Mo-Cb) Grade 1</td>
<td>N06625</td>
<td>1600 (871)<sup>f</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>625 (Ni-Cr-Mo-Cb) Grade 2</td>
<td>N06625</td>
<td>2000 (1093)<sup>g</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>G3<sup>g</sup> (Ni-Cr-Fe-Mo-Cu)</td>
<td>N06985</td>
<td>2100-2150 (1147 to 1177)<sup>e</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>Alloy 20 (Cr-Ni-Fe-Mo-Cu-Cb)</td>
<td>N08020</td>
<td>1700-1850 (927 to 1010)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>...</td>
<td>N08024</td>
<td>1925-1975 (1052 to 1078)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>...</td>
<td>N08026</td>
<td>2050-2200 (1121 to 1204)</td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>B25 (Ni-Fe-Cr-Mo-Cu)</td>
<td>N08825</td>
<td>1700-1800 (930 to 980)<sup>e</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>C276 (Low C-Ni-Mo-Cr)</td>
<td>N10276</td>
<td>2050 (1121)<sup>c</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>B2 (Ni-Mo)</td>
<td>N10665</td>
<td>1950 (1065)<sup>c</sup></td>
<td>Rapid Air/water</td>
</tr>
<tr>
<td>B3<sup>j</sup> (Ni-Mo)</td>
<td>N10675</td>
<td>1950 (1065)<sup>c</sup></td>
<td>Rapid Air/water</td>
</tr>
</tbody>
</table>

^aRecommended temperatures—Different temperatures may be selected by either the purchaser or the manufacturer.
^bSet temperatures, ±25°F (±14°C).
^cMinimum set temperature.
^dRegistered Trademark of Haynes International.
^eHeat treatment is highly dependent on intended service temperature — consult material manufacturer for specific heat treatments for end use temperature.

7 Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990.
8 Available from the American Welding Society, 2501 N.W. Seventh St., Miami, FL 33125.
5.2.2.3 All single-welded pipe shall be completely radiographed.

5.2.3 The weld surface on either side of the weld shall be flush with the base plate or shall have a reasonably uniform crown, not to exceed 1/8 in. (3.2 mm). Any weld reinforcement may be removed at the manufacturer’s option or by agreement between the manufacturer and purchaser. The contour of the reinforcement shall be reasonably smooth and free of irregularities. The deposited metal shall be fused uniformly into the plate surface. No concavity of contour is permitted unless the resulting thickness of weld metal is equal to or greater than the minimum thickness of the adjacent base metal.

5.2.4 Weld defects shall be repaired by removal to sound metal and rewelding. Subsequent heat treatment and inspection (that is, visual, radiographic and dye penetrant) shall be as required on the original welds.

5.3 Heat Treatment:

5.3.1 The pipe furnished under this specification, shall be heat treated in accordance with Table 1. See Table 1 for recommended practice.

5.3.2 The purchase order shall specify one of the following conditions if the heat-treated condition specified by Table 1 is not desired by the purchaser.

5.3.2.1 A final heat treatment other than that specified in Table 1—Each pipe supplied under this requirement shall be stenciled with the suffix “HT-O.”

5.3.2.2 No final heat-treatment of pipe fabricated of plate that has been heat treated at temperatures required by this specification—Each pipe supplied under this requirement shall be stenciled with the suffix “HT-SO.”

6. Chemical Composition

6.1 Product Analysis of Plate—The pipe manufacturer shall make an analysis of each mill heat of plate material. The product analysis so determined shall meet the requirements of the plate specification to which the material was ordered.

6.2 Product Analysis of Weld—The pipe manufacturer shall make an analysis of the finished deposited weld material from each lot of pipe. The chemical composition of the weld deposit shall fall within the chemical composition limits of the applicable AWS filler metal specification for the corresponding grade shown in Table 2 (or higher alloyed filler metal when approved by the purchaser) or shall conform to the chemical composition specified for the plate specification to which the material was ordered, or shall, subject to the purchaser approval, be a filler metal more highly alloyed than the base metal when needed for corrosion resistance or other properties.

Use of a filler metal other than that listed in Table 2 shall be reported and the filler metal identified on the pipe manufacturer’s certificate of test. The composite analysis variations from Table 2 limits, that are caused by the dilution of the weld metal with the base metal, shall be agreed upon between purchaser and manufacturer.

TABLE 2 Pipe and Weld Filler Materials

<table>
<thead>
<tr>
<th>Alloy</th>
<th>UNS Designation</th>
<th>ASTM Plate Specification</th>
<th>Applicable AWS Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A5.11</td>
</tr>
<tr>
<td>200</td>
<td>N02200</td>
<td>B162</td>
<td>ENi-1</td>
</tr>
<tr>
<td>201</td>
<td>N02201</td>
<td>B162</td>
<td>...</td>
</tr>
<tr>
<td>400</td>
<td>N04400</td>
<td>B127</td>
<td>ENiCu-7</td>
</tr>
<tr>
<td>X</td>
<td>N06002</td>
<td>B435</td>
<td>ENiCrMo-2</td>
</tr>
<tr>
<td>C22w</td>
<td>N06022</td>
<td>B575</td>
<td>ENiCrMo-10</td>
</tr>
<tr>
<td>C2000w</td>
<td>N06200</td>
<td>B575</td>
<td>ENiCrMo-17C</td>
</tr>
<tr>
<td>C30w</td>
<td>N06030</td>
<td>B582</td>
<td>ENiCrMo-11</td>
</tr>
<tr>
<td>230w</td>
<td>N06230</td>
<td>B435</td>
<td>ENiCrMo-6</td>
</tr>
<tr>
<td>600</td>
<td>N06600</td>
<td>B168</td>
<td>N/A</td>
</tr>
<tr>
<td>601</td>
<td>N06601</td>
<td>B168</td>
<td>...</td>
</tr>
<tr>
<td>625</td>
<td>N06625</td>
<td>B443</td>
<td>ENiCrMo-3</td>
</tr>
<tr>
<td>G3</td>
<td>N06985</td>
<td>B582</td>
<td>ENiCrMo-9</td>
</tr>
<tr>
<td>20CB</td>
<td>N08020</td>
<td>B463</td>
<td>...</td>
</tr>
<tr>
<td>Cr-Ni-Fe-Mo-Cu</td>
<td>N08024</td>
<td>B463</td>
<td>N/A</td>
</tr>
<tr>
<td>20MoCr</td>
<td>N08026</td>
<td>B463</td>
<td>...</td>
</tr>
<tr>
<td>825</td>
<td>N08825</td>
<td>B424</td>
<td>ENiCrMo-3</td>
</tr>
<tr>
<td>C276</td>
<td>N10276</td>
<td>B575</td>
<td>ENiMo-4</td>
</tr>
<tr>
<td>B2</td>
<td>N10665</td>
<td>B333</td>
<td>ENiMo-7</td>
</tr>
<tr>
<td>B3w</td>
<td>N10675</td>
<td>B333</td>
<td>ENiMo-10</td>
</tr>
</tbody>
</table>

*New designation established in accordance with ASTM E527 and SAE J 1086, Practice for Numbering Metals and Alloys (UNS).
Registered Trademark of Haynes International.
Approved by AWS but not published.
No AWS classification existed at the time of this writing—consult material manufacturer for recommended filler metal.
Registered Trademark of Carpenter Steel.
Recommended filler metal—this material is highly dependent on intended service temperature for best filler metal selection—consult material manufacturer for specific filler metal given the end use temperature.
6.3 A lot for product analysis shall consist of one heat.

7. Mechanical and Other Properties

7.1 Mechanical Properties:

7.1.1 The mechanical properties of the plate shall be in accordance with the plate specification to which it was ordered. Tension tests made by the plate manufacturer shall qualify the plate material.

7.1.2 Transverse tension tests taken across the welded joint shall have the same tensile property requirements as those specified for the plate.

7.1.3 A lot for mechanical testing shall consist of all material from the same heat (which may include more than one plate/slab/lot number), nominal size (excepting length) and heat treatment. When final heat treatment is in a batch-type furnace, a lot shall include only those pipes of the same size and the same heat (which may include more than one plate/slab/lot number) that are heat-treated in the same furnace charge. When heat treatment is in a continuous furnace, a lot shall include all pipe of the same size and heat (which may include more than one plate/slab/lot number), heat-treated in the same furnace at the same temperature, time at temperature, and furnace speed during one production run. At no time shall a lot consist of more than 20,000 lb (9070 kg).

7.1.4 Samples of the material to provide test specimens for mechanical and other properties shall be taken from such locations in each lot as to be representative of that lot. Test specimens shall be taken from material in the final condition. It is permissible for the test specimens to be taken from a test plate of the same material as the pipe, the test plate being attached to the end of the cylinder and welded as a prolongation of the pipe longitudinal weld seam, including any/all post weld heat treatments.

7.2 Transverse Guided Weld Bend Test Requirements:

7.2.1 Two bend test specimens shall be taken transversely from the weld area of the pipe or test plate. Except as provided in 7.2.2, one shall be subject to a face guided-bend test and the second to a root-guided-bend test. One specimen shall be bent with the inside surface of the pipe against the plunger and the other with the outside surface against the plunger.

7.2.2 For wall thicknesses over \(\frac{3}{8} \) in. [9.5 mm] but less than \(\frac{3}{4} \) in. [19 mm] side-bend tests may be made instead of the face and root-bend tests. For specified wall thicknesses \(\frac{3}{4} \) in. [19 mm] and over, both specimens shall be subjected to the side-bend test. Side-bend specimens shall be bent so that one of the side surfaces becomes the convex surface of the bend specimen.

7.2.3 Bends made in accordance with Fig. 1 shall be acceptable if no cracks or other imperfections exceeding \(\frac{1}{8} \) in. (3.2 mm) in any direction are present in the weld metal or between the weld and the pipe metal after bending. Cracks that originate along the edges of the specimen during testing, and that are less than \(\frac{1}{4} \) in. (6.3 mm) measured in any direction shall not be considered.

7.3 Hydrostatic Pressure Test—Each pipe shall be subjected to a hydrostatic pressure test in accordance with 13.4. Any pipe that shows leaks during the pressure test conducted in accordance with 13.4 shall be rejected but any leaking areas may be cut out and the pipe retested.

7.4 Radiographic Examination:

<table>
<thead>
<tr>
<th>Test Specimen Thickness, in.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{8})</td>
<td>1(\frac{1}{2})</td>
<td>(\frac{3}{4})</td>
<td>2(\frac{1}{8})</td>
<td>1(\frac{3}{8})</td>
</tr>
<tr>
<td>(t)</td>
<td>4(t)</td>
<td>2(t)</td>
<td>6(t + \frac{1}{8})</td>
<td>3(t + \frac{1}{16})</td>
</tr>
</tbody>
</table>

FIG. 1 Guided-Bend Test Jig

Note 1—1 in. = 25.4 mm.
7.4.1 For Classes 1, 3, and 4 pipe, all welded joints shall be completely examined by radiography in accordance with the requirements of the ASME Boiler and Pressure Vessel Code, Section VIII, Div. 1, Paragraph UW51.

7.4.2 For Class 5 pipe, the welded joints shall be spot radiographed to the extent of not less than 12 in. [300 mm] of radiograph per 50 ft [15 mm] of weld in accordance with the requirements of the ASME Boiler and Pressure Vessel Code, Section VIII, Div. 1, Paragraph UW51.

7.4.3 It is permissible to perform radiographic examination prior to heat treatment.

8. Dimensions and Permissible Variations

8.1 Permissible variations in dimensions at any point in a length of pipe shall not exceed the following:

8.1.1 Outside Diameter—Based on circumferential measurement, ±0.5 % of the nominal outside diameter.

8.1.2 Out-of-Roundness—Differences between major and minor outside diameters, 1.0 % of the specified outside diameter.

8.1.3 Alignment (Camber)—Using a 10-ft (3-m) straight-edge placed so that both ends are in contact with the pipe, the camber shall not be more than 1⁄8 in. (3.17 mm).

8.2 Thickness—The minimum wall thickness at any point in the pipe shall not be more than 0.01 in. (0.25 mm) under the nominal thickness.

8.3 Lengths:

8.3.1 The lengths required shall be specified in the orders.

8.3.2 Circumferentially welded joints of the same quality as the longitudinal joints shall be permitted by agreement between the manufacturer and the purchaser.

9. Workmanship, Finish, and Appearance

9.1 Pipe shall be furnished with smooth ends, free of burrs.

9.2 The finished pipe shall be free of injurious defects and shall have a workmanlike finish.

9.3 Repair of Plate Defects by Machining or Grinding—Pipe showing moderate slivers may be machined or ground inside or outside to a depth that shall ensure the removal of all included scale and slivers, provided the wall thickness is not reduced below the specified minimum wall thickness. Machining or grinding shall follow inspection of the pipe as rolled and shall be followed by supplementary visual inspection.

9.4 Repair of Plate Defects by Welding—Repair of injurious defects shall be permitted only with the approval of the purchaser. Defects shall be thoroughly chipped out before welding. The repairs shall be radiographed and if the pipe itself has already been heat treated, it shall then be heat treated again except in the case of small welds that, in the estimation of the purchaser’s inspector, do not require heat treatment. Each length of pipe repaired in this manner shall be hydrostatically tested after being repaired.

9.5 The pipe shall be sandblasted or pickled to remove all scale and then passivated.

10. Sampling

10.1 Lots for Chemical Analysis and Mechanical Testing:

10.1.1 Heat Analysis—A lot shall consist of one same heat.

10.1.2 Mechanical Testing—A lot shall consist of the material of the same nominal size from one heat and heat treat condition (which can include more than one plate/slab/lot number).

10.2 Sampling for Chemical Analysis:

10.2.1 A representative sample shall be taken by the plate manufacturer during pouring or subsequent processing.

10.3 Sampling for Mechanical Properties—Transverse tension and bend test specimens shall be cut after final heat treatment from the end of the finished pipe or from a test plate of the same material and heat as the pipe that is attached to the end of the cylinder and welded as a prolongation of the longitudinal pipe seam.

11. Number of Tests and Retests

11.1 Chemical Analysis—One test per lot.

11.2 Transverse Tension Test—One per lot.

11.3 Transverse Guided Weld Bend Test—Two per lot.

11.4 Hydrostatic Pressure Test—Each pipe shall be subjected to a hydrostatic pressure test.

11.5 Retests:

11.5.1 If the results of any mechanical tests of pipe material of any lot do not conform to the requirements specified in Section 7, retests shall be made on double the original number from the same lot, each of which shall conform to the requirements specified.

11.5.2 If the results of the mechanical tests of any lot do not conform to the requirements specified, it is permissible that such lot be reworked and resubmitted. The same number of tests as originally specified shall be required on reworked and resubmitted pipe.

12. Specimen Preparation

12.1 The test specimens required by this specification shall conform to those described in Test Methods and Definitions A 370.

12.2 The transverse tension and bend test specimens shall be flattened cold before final machining to size.

12.3 Tension and bend test specimens shall be the full thickness of the material as rolled and shall be machined to the form and dimensions shown in Fig. 2, Fig. 3, and Fig. 4.

12.4 If any test specimen shows flaws or defective machining, it may be discarded and another specimen substituted.

13. Test Methods

13.1 The chemical composition and mechanical properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following ASTM methods:

13.1.1 Chemical Analysis—Test Methods E 1473. The elements defined as balance or remainder shall be determined arithmetically by difference.

13.1.2 Tension Test—Test Methods E 8.

13.2 For the purposes of determining compliance with the limits in this specification, an observed value or a calculated value shall be rounded as indicated, in accordance with the rounding method of Practice E 29:
Requirements

Chemical composition and tolerance

Tensile strength and yield strength

Elongation

Rounded unit for observed or calculated value

Nearest unit in the last right-hand place of figures of the specified limit

Nearest 1000 psi (7 MPa)

Nearest 1%

13.3 Tension Test—If the percentage of elongation of any test specimen is less than that specified and any part of the fracture is more than ¾ in. (19.05 mm) from the center of the gage length, as indicated by scribe marks on the specimen before testing, or if a specimen breaks due to a flaw, a retest shall be allowed.

13.4 Hydrostatic Test—All pipe shall be hydrostatically tested. Such testing shall be done at a pressure determined by the following equation, but shall not exceed 2500 psi (17 MPa) for nominal sizes 3 in. (76 mm) and under, or 2800 psi (19 MPa) for all nominal sizes over 3 in.
\[P = 2St/D \]
\[S = PD/2t \]

where:

- \(P \) = hydrostatic test pressure, psi (MPa),
- \(S \) = allowable fiber stress, for material in the condition (temper) furnished as specified in the product specification (\(S \) is calculated as the lower of \(\frac{2}{3} \) of the specified minimum 0.2% offset yield strength or \(\frac{1}{4} \) of the specified minimum ultimate strength for the material),
- \(t \) = specified wall thickness, in. (mm), and
- \(D \) = specified outside diameter, in. (mm).

13.4.1 The test pressure shall be held for a minimum of 5 s and any pipe showing leaks during hydrostatic testing shall be rejected. Leaking areas may be cut out and remaining pipe retested for acceptance.

13.4.2 The purchaser, with the agreement of the manufacturer, is permitted to complete the hydrostatic test requirement with the system pressure test, which can be lower or higher than the specification test pressure, but in no case shall the test pressure be lower than the system design pressure. Each length of pipe furnished without completed manufacturer’s hydrostatic test shall include the mandatory marking of the letters “NH.”

14. Inspection

14.1 Inspection of the material shall be agreed upon between the purchaser and the supplier as part of the purchase contract.

15. Rejection and Rehearing

15.1 Material that fails to meet the requirements of this specification may be rejected. Rejection shall be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.

16. Certification

16.1 When specified on the purchase order or contract, a producer’s or supplier’s certification shall be furnished to the purchaser, that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. When specified on the order or contract, a report of test results shall be furnished.

17. Product Marking

17.1 The name or brand of the manufacturer, the name of the material or UNS number, the specification number, condition, (See 5.3) heat number, class and nominal pipe size shall be legibly marked on each piece. The material marking shall be any method that will not result in harmful contamination.

18. Keywords

18.1 fusion welded; high-temperature alloy; pipe

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order.

S1. Referenced Document

S1.2 ASTM Standard:

A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels

S2. Corrosion Tests for UNS N08020

S2.1 One intergranular corrosion test per lot shall be performed by the manufacturer on a sensitized specimen and tested in accordance with Practices A 262. When this supplementary requirement is specified, the specific practice (Practice B or Practice E) shall also be specified. If Practice B is specified, the specimen must pass with a rate of less than 0.002 in./month (ipm). A lot for intergranular corrosion testing shall be the same as for mechanical testing.

S2.1.1 In addition to the stabilize anneal, the specimen shall be sensitized for 1 h at 1250°F (677°C) before being subjected to corrosion testing.

S2.1.2 If any corrosion test specimen fails the test, the material represented by such specimens may be reheat-treated and resubmitted for test.